Chapter 7

Linear and generalised linear models

7.1 Linear model

7.1.1 Model

So fary; has beeriid. Here we extend this to the case where the observations depend linearly on some known (fixed)
p x 1 vector of regressors;. The basic structure will be that

yi=aif+e;, Be) =0, Var(s) =02
and theg; are iid. This model is indexed by the paramet@rand o2. We can write the model in matrix form as
y=XB+e wherey = (y1, ..., yn), X = (@1, ..., xn) @Nde = (£1, ...,5) .

7.2 Definition

B=(X'X)"" X'y, assumingX has full rank.

7.2.1 Interpretation
(1) The most common association with the above estimator is with the so called least squares principle. This write

g = arg mine'e 7axg min Z €5
i=1

drg, min E — I,ﬂ

That is it determine$ by finding the value of3 which minimises the squared vertical distances betwgemd

z}3. This construction leaves many questions unanswered for the choice of squared distances looks completely ad

hoc. Justifications usually involve the resulting estimator has good properties. Alternatives include

i —al,g IIlIIlZ lyi — 48|,
i=1

which is called ar.; (or least absolute deviation) regression estimator, or

B :al;g min medium {|y; — =18, ..., [yn — =, 8]},

the least medium absolute deviation (high breakdown) estimator.
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(2) Suppose we regatdl as fixed (or we condition on it for purposes of inference) gnek N (z!,3, 02), with they;
being independent ovér Then the ML estimator is

~ 1
B = argmax | -—— i —ziB)”
5 (W) { 27 Z }
= arg mlnz i — &y ﬂ
the same as the least squares estimator. This implies least squares estimation is the ML estimator if the mode

Gaussian and has many optimality properties if the truth is a Gaussian regression.
(3) Suppose; ~ Laplace(z}3, 0?), that is

. 1 1
i B,0%) = — —— |yi — T
f(yi; 8,0%) % exp{ D_lyl Iqu}v
and that the data are independent avéior this distribution the usual mean and variance of the Gaussian regressior

carry over. Then the model has much fatter tailg;in 2} 5 than the normal as the Laplace regression model involves
only exponentiating minus the absolute value, while the Gaussian model squares these distances. The ML estim

for B is
1 n 1 n ,
= agg max <%> EXP{—;EM —zif)

arg min Z lyi — 3B .

i=1

ot

That is the ML estimator for this distribution is &y regression. Such a regression is typically less sensitive to
unusual observations than the least squares regression — this can be a good thing or a bad thing in practice. NC
the Laplace log-likelihood function is not continuously differentiable with respe@tand so many of the typical
properties of MLE do not go through even if the data is Laplace.

example

Think about the dataset= (1,2,3,5)" andy = (1,2,3,1)’, so 3 observations are in a straight-line with gradient one and
a single observation is an outlier to that. The LS estimatét is 4+ 9+ 5) / (1 +4 + 9 + 25) = 0.487 and is deeply
effected by the outlier. Th&, estimator minimises sum of the absolute values. These decrease with a gradient of -4 unt
£ = 1/5 when it slows to—2 which continues untiB = 1 when the gradient switches #o So theL, regressor gives an
estimator ofl, so ignores the outlier completely.

7.3 Properties of least squares
Fory = XB +ecandE(e) = 0 while Var(e) = 61, then
B=(X'X)"'X'y=8+(X'X)"" X,
so0f3 is unbiased whild”ar (?) =2 (X'X)
If ¢ is Gaussian, thefi is a linear combination of Gaussian and so if Gaussian. Further,

dlogL 1 _, . . . . OlogL 1 _,
%5 =X (y—XB) implying Var 55 = XX

soE achieves the Cramer-Rao lower bound and is the minimum variance unbiased estimator.
If the parametric model is not Gaussidrhas more limited optimality properties. In particular it is possible to show
that in the class of estimators which is lineayirg is the minimum variance unbiased estimator (Gauss-Markov theorem).
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This result is less helpful than it at first seems for when the data is non-Gaussian it seems clear that we should be using a

non-linear estimator! See, for example, the discussion above about the Laplace regression model.
A more thorough discussion of these issues is given in Ch&pter

7.4 Generalized linear models

7.4.1 Models

Instead of working with a particular density function it is sometimes helpful to construct a class of densities. One such
class is the exponential family, which puts

F(:6,%) = exp %{yo —bO)} - ey, )] -

We are free to chose the functiol(s) and¢(., .) to place familiar distributions in this framework.. Simple examples of
this includes

o N(p,02),0 =, = 0% b(0) =62/2.
o Poisson with meap, putsf = log u, b(6) = exp 6 andy = 1.
 Bernoulli with probability of success @f Then we pu = log {p/(1 — p)}, b(d) = log(1 + exp §) ands) = 1.

Other common distributions which go into this framework includes the gamma and some extreme value distributions.
An excellent review of this material is given in Azzalini (1996, Ch. 6) and Garthwaite, Jolliffe and Jones (1995, Ch. 10).
Having a class of densities is useful as it allows us to derive some generic results. First, the log-likelihood is

log L(6,;y) = const + g > i - nl;ig) = ey, v),
" =1

which implies
ob(6)

where b'(9) = 20

dlogL(8,v;y) 1 Xn: nb'(6)
GOV ) _ 2Ny, —

a0 T I

i=1
As the expectation of the score is zero when evaluated at the true parameter point this implies

E(y:) =V(6),

while the information equality implies
Var(y;) = ¢¥b"(9).

7.4.2 Regression models

The Gaussian distributiol; ~ N(u,0?) extends to the regression problem whfe~ N (8'z;,02). An interesting
question is how this argument extends to non-Gaussian densities. Clearly we cannot jyst writ(y;) = =3 as some
non-Gaussian densities require the mean to be positive! Instead we will work with a function of the mean

g(pi) = 38 = i,

which is called a link function. Throughout | will assumeg) is @ monotonic function. An example of this is the Poisson
case whergy; > 0 and so it makes some sense to wiigu; = =;3. Economic examples of the use of Poisson type
regressions includes models of patents by Hausman, Hall and Griliches (1984). Likewise in the Bernoulli case we have
i € (0,1) and has been used by, for example, Micklewright (1989) in labour econohécge it might make sense to
use a logistic transformatidng {p;/ (1 — p;)} = z}p.

If we combine an exponential family model with a regression model then we call the result a generalized linear model.
It has the generic form

108 £ (43 01,) = 7 {0s = b)) el ),
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where

ni = E(y;) =0'(0;) and g(u) =i = n;.
Hence the likelihood depends now only on the parameteasd 3 as thed; are solely determined by the regressors and
the regression coefficients.

7.4.3 Likelihood analysis

We think of 5 as the parameters of interest, then

n

log L(B,1;y) = i > i = b0} = Y ey, ¥),
i=1

i=1

and so

dlog L(B,¢y) _ 1 XH: On; Opi 96;
FETY A
Although this looks complicated it simplifies to the important result

n

Olog L(B,¥iy) _ ) [m{yi — i} z‘mi] 7

=00y

oB * Var(y:) on;

as ! ) Var(ys)
i Opi e, Varlys

ap _xl'aa,' b(0:) 7

This score cannot be immediately solved to deliver the ML estimatgras in generag,‘]% Var(y;) andy; all depend
on 3. Hence we will have to use a numerical maximisation procedure to iterate to the maximum. Here we will look at
Fisher scoring methddwhich uses the expected information matrix.
The expected information for the sample can be found by looking at
Olog L(B,¢;Y;) 0log L(B, 45 Yi) | _ {yi — i} O {yi — pui} O
E =E |z;; Tikp— 5
eeh OBk Var(y;) omi ~ Var(y;) O

which simplifies to

TV ar(y) \on; )

This implies, using independence acrossiththat

o (PPlogLY _ dlog LdlogL| < a1 Op; 27 —
E(a@a@)_E { a5 op _E%I"Var(yi) o) =X

whereW is diagonal withii — th element
wi — 1 Opi 2
Y Var(y) \omi)

andX;; = z;;. Likewise the score can be written as
dlog L(B,;y)
oB
The implication of this is that the Fisher scoring algorithm actually carries out iteratively weighted least squares, compt
ing the update of by

=X'Wu, where wu; = {y; — p;} On;i/Op;.

BUAD = g 4 (X'WX) P X'Wu = (X'WX) ' X'W (Xﬂ(“ + u) = X'Wx)"" x'wy®,

say.

!Fisher scoring generically iterates

U+ _ glk) 4 (_E92 log L

) -t dlog L(O™); y)
000" |,_p)

06

Hence it is a particular case of the quasi-Newton method.
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exercise

Suppose we wish to model durations of employmgptas a function of some (assumed fixed) explanatory variable,
We suppose
fyis B) = Aiexp(—yiXi), i >0, A =exp(zif),

andE(y;) = )\,.’1 . Assume they; are independent over Write down the model’s likelihood and find the score function
for 5. Show that the log-likelihood is concave and hence suggest how you might numerically compute the ML estimator?

7.4.4 Asymptotic distribution

In our discussion of the asymptotic distribution of the ML estimator we have always assumed that the observations are
iid. This model does not have identical distributions, although the independence across individuals remains.
The average expected information per observation is

1_(dlogLdlogL) 1 dlog L(8;Y;) dlog L(G;Y:)\ _ 1,
n (3/3 6,3’) ZE( B ap' RS

n
i=1

Now suppose that

1 OlogLOlog L\ _
(Pt

then we have that
i (ﬂ - ,3) LN (,MY).

This result will hold as long a8/ is finite and positive semi-definite. This will happen as long as the expected information
per observation

B dlog L(6;Y;) dlog L(6;Y;)
ap ap!

is always strictly positive and bounded.

7.5 Generalized Least Squares and instrumental variables

7.5.1 Generalized Least Squares, GLS

Sincef? is p.d, the inverse exists and is also p.d. Therefore, there exists a nonsingularPhstrikat
N'=PP.

This gives
B =(X'P'PX)"'X'P'Py = {(PX) (PX)}"'(PX)'(Py).

This would have been obtained from the regressio®gfon PX. To deal with the nonspherical model, pre-multiply
y = X8 + u by P so that
Yo = XoB + us

wherey, = Py, X, = PX andu. = Pu. Since,2 = P~}(P")!,
var(u,) = E(Puu'P') = 6> PRP' = o1,
satisfying the conditions under which OLS is BLUE. TBeSestimator is defined as
Bcs = (X X)Xy, = (X' X)TH (X027 y)

so that
var(BaLs) = o2(X' Q71 X))
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which is also the asymptotic variance matrix had we adopted the ML approach. An unbiased estintatanfbe
obtained from OLS applied to the transformed model

s = (9. — X.Bars) (v — XuBars)/(n — k)
= {P(y— XBars)}'{P(y — XBars)}/(n — k)
(y — XBcws)' 2" (y — XBas)/(n — k),

which differs from the biased MLE? by the factom/(n — k). To test the finite sample restrictidd, : B3 = r, the
test can be based on

(r — RBaLs) {R(X'27'X)"'R'}"!(r — RBaws)/q N

52

F=

Fq,n*k-
Note that we could have also writtenasu ~ N (0, V') (where V = 02 2), so that,

Bas = (X'V7IX)T'x'vly
var(Bars) (xX'vix)™h

7.5.2 Instrumental Variable (1V) estimators

If the condition stating that the regressors and the disturbance are independent does not hold, then the OLS estimator
biased and inconsistent. As an example, consideettoes in variablesproblem,

y=zf+u
without a constant term, but that the variables are measured with error, that is,
r = THv
sothaty = pBi+u

whereu, & andv are mutually independent. This scenario is classic under modelswagsurement errorThe OLS
equations give

3 S yiz; S i(BT; + u;)
g = =

Yt S
— ezzti‘t Zz,-u,'
SR

If the second moments and their plims’s exist, then,
H 1 2 2 2
plim { — Noaf) = oi+ol
1 _ 5
plim - Z TT; = 03
. 1
plim > Z T

|
o

giving

N o2
limg =3 = .
Pime =1 (o + o)
Hence OLS is biased and inconsistent. Suppose we now re-write the model as
y = fr+ (u—pv)
so that
Ya
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