
Chapter 7

Linear and generalised linear models

7.1 Linear model

7.1.1 Model

So faryi has beeniid. Here we extend this to the case where the observations depend linearly on some known (fixed)

p� 1 vector of regressorsxi. The basic structure will be that

yi = x0i� + "i; E("i) = 0; V ar("i) = �2;

and the"i are iid. This model is indexed by the parameters� and�2. We can write the model in matrix form as

y = X� + ", wherey = (y1; :::; yn)
0,X = (x1; :::; xn)
0 and" = ("1; :::; "n)
0.

7.2 Definition

b� = (X 0X)
�1
X 0y; assumingX has full rank.

7.2.1 Interpretation

(1) The most common association with the above estimator is with the so called least squares principle. This write

b� = arg
�

min "0" =arg
�

min
nX

i=1
"2i

= arg
�

min
nX

i=1
(yi � x0i�)

2
:

That is it determinesb� by finding the value of� which minimises the squared vertical distances betweenyi and

x0i�. This construction leaves many questions unanswered for the choice of squared distances looks completely ad
hoc. Justifications usually involve the resulting estimator has good properties. Alternatives include

e� =arg
�

min
nX

i=1
jyi � x0i�j ;

which is called anL1 (or least absolute deviation) regression estimator, or

ee� =arg
�

minmedium fjy1 � x01�j ; :::; jyn � x0n�jg ;

the least medium absolute deviation (high breakdown) estimator.
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(2) Suppose we regardX as fixed (or we condition on it for purposes of inference) andyi � N(x0i�; �
2), with theyi

being independent overi. Then the ML estimator is

b� = arg
�

max
�
1p

2��2
�

exp
(

� 1
2�2

nX
i=1

(yi � x0i�)
2

)

= arg
�

min
nX

i=1
(yi � x0i�)

2
;

the same as the least squares estimator. This implies least squares estimation is the ML estimator if the model is
Gaussian and has many optimality properties if the truth is a Gaussian regression.

(3) Supposeyi � Laplace(x0i�; �
2), that is

f(yi;�; �
2) =

1
2�

exp
�

� 1
�

jyi � x0i�j
�

;

and that the data are independent overi. For this distribution the usual mean and variance of the Gaussian regression
carry over. Then the model has much fatter tails inyi�x0i� than the normal as the Laplace regression model involves
only exponentiating minus the absolute value, while the Gaussian model squares these distances. The ML estimator
for � is

e� = arg
�

max
�
1

2�
�n

exp
(

� 1
�

nX
i=1

jyi � x0i�j
)

= arg
�

min
nX

i=1
jyi � x0i�j :

That is the ML estimator for this distribution is anL1 regression. Such a regression is typically less sensitive to
unusual observations than the least squares regression — this can be a good thing or a bad thing in practice. NOTE:
the Laplace log-likelihood function is not continuously differentiable with respect to� and so many of the typical
properties of MLE do not go through even if the data is Laplace.

example

Think about the datasetx = (1; 2; 3; 5)
0 andy = (1; 2; 3; 1)
0, so 3 observations are in a straight-line with gradient one and

a single observation is an outlier to that. The LS estimator is(1 + 4 + 9 + 5) = (1 + 4 + 9 + 25) = 0:487 and is deeply
effected by the outlier. TheL1 estimator minimises sum of the absolute values. These decrease with a gradient of -4 until

� = 1=5 when it slows to�2 which continues until� = 1 when the gradient switches to4. So theL1 regressor gives an
estimator of1, so ignores the outlier completely.

7.3 Properties of least squares

Fory = X� + " andE(") = 0 while V ar(") = �2I, then

b� = (X 0X)
�1
X 0y = � + (X 0X)
�1
X 0";

so b� is unbiased whileV ar
�b�� = �2 (X 0X)
�1.

If " is Gaussian, thenb� is a linear combination of Gaussian and so if Gaussian. Further,

@ logL

@�

=

1
�2

X 0 (y �X�) implying V ar
@ logL

@�

=

1
�2

X 0X;

so b� achieves the Cramer-Rao lower bound and is the minimum variance unbiased estimator.
If the parametric model is not Gaussianb� has more limited optimality properties. In particular it is possible to show

that in the class of estimators which is linear iny; b� is the minimum variance unbiased estimator (Gauss-Markov theorem).
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This result is less helpful than it at first seems for when the data is non-Gaussian it seems clear that we should be using a
non-linear estimator! See, for example, the discussion above about the Laplace regression model.

A more thorough discussion of these issues is given in Chapter??.

7.4 Generalized linear models�

7.4.1 Models

Instead of working with a particular density function it is sometimes helpful to construct a class of densities. One such
class is the exponential family, which puts

f(y; �;  ) = exp
�
1

 
fy� � b(�)g � c(y;  )

�
:

We are free to chose the functionsb(:) andc(:; :) to place familiar distributions in this framework.. Simple examples of
this includes

� N(�; �2), � = �,  = �2, b(�) = �2=2.

� Poisson with mean�, puts� = log�, b(�) = exp � and = 1.

� Bernoulli with probability of success ofp. Then we put� = log fp=(1� p)g, b(�) = log(1 + exp �) and = 1.

Other common distributions which go into this framework includes the gamma and some extreme value distributions.
An excellent review of this material is given in Azzalini (1996, Ch. 6) and Garthwaite, Jolliffe and Jones (1995, Ch. 10).

Having a class of densities is useful as it allows us to derive some generic results. First, the log-likelihood is

logL(�;  ; y) = const+
�

 

nX
i=1

yi � nb(�)
 

�
X
c(yi;  );

which implies

@ logL(�;  ; y)

@�

=

1
 

nX
i=1

yi � nb0(�)

 

; where b0(�) =
@b(�)

@�
:

As the expectation of the score is zero when evaluated at the true parameter point this implies

E(yi) = b0(�);

while the information equality implies

V ar(yi) =  b00(�):

7.4.2 Regression models

The Gaussian distributionYi � N(�; �2) extends to the regression problem whereYi � N(�0xi; �
2). An interesting

question is how this argument extends to non-Gaussian densities. Clearly we cannot just write�i = E(yi) = x0i� as some
non-Gaussian densities require the mean to be positive! Instead we will work with a function of the mean

g(�i) = x0i� = �i;

which is called a link function. Throughout I will assumeg(:) is a monotonic function. An example of this is the Poisson
case where�i > 0 and so it makes some sense to writelog�i = x0i�. Economic examples of the use of Poisson type
regressions includes models of patents by Hausman, Hall and Griliches (1984). Likewise in the Bernoulli case we have

�i 2 (0; 1) and has been used by, for example, Micklewright (1989) in labour economics: Hence it might make sense to
use a logistic transformationlog f�i= (1� �i)g = x0i�.

If we combine an exponential family model with a regression model then we call the result a generalized linear model.
It has the generic form

log f(y; �i;  ) =

1
 

fy�i � b(�i)g � c(y;  );
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where

�i = E(yi) = b0(�i) and g(�i) = x0i� = �i.

Hence the likelihood depends now only on the parameters and� as the�i are solely determined by the regressors and
the regression coefficients.

7.4.3 Likelihood analysis

We think of� as the parameters of interest, then

logL(�;  ; y) =

1
 

nX
i=1

fyi�i � b(�i)g �
nX

i=1
c(yi;  );

and so

@ logL(�;  ; y)

@�

=

1
 

nX
i=1

�
@�i

@�
@�i

@�i
@�i

@�i
fyi � b0(�i)g

�
:

Although this looks complicated it simplifies to the important result

@ logL(�;  ; y)

@�

=

nX
i=1

�
xi

fyi � �ig

V ar(yi)
@�i

@�i
�

;

as

@�i
@�

= xi,

@�i
@�i

= b00(�i) =
V ar(yi)

 

.

This score cannot be immediately solved to deliver the ML estimator of� as in general@�i
@�i
; V ar(yi) and�i all depend

on�. Hence we will have to use a numerical maximisation procedure to iterate to the maximum. Here we will look at a
Fisher scoring method1, which uses the expected information matrix.

The expected information for the sample can be found by looking at

E
�
@ logL(�;  ;Yi)

@�j

@ logL(�;  ;Yi)

@�k

�
= E

�
xij

fyi � �ig

V ar(yi)
@�i

@�i
xik

fyi � �ig

V ar(yi)
@�i

@�i
�

;

which simplifies to

xijxik

1

V ar(yi)
�
@�i

@�i
�2

:

This implies, using independence across theYi that

�E
�
@2 logL

@�@�0
�

= E
�
@ logL

@�

@ logL

@�0
�

=

nX
i=1

xix
0
i

1

V ar(yi)
�
@�i

@�i
�2

= X 0WX;

whereW is diagonal withii� th element

wi =

1

V ar(yi)
�
@�i

@�i
�2

;

andXij = xij . Likewise the score can be written as

@ logL(�;  ; y)

@�

= X 0Wu; where ui = fyi � �ig@�i=@�i:

The implication of this is that the Fisher scoring algorithm actually carries out iteratively weighted least squares, comput-
ing the update of� by

�(k+1) = �(k) + (X 0WX)
�1
X 0Wu = (X 0WX)
�1
X 0W

�
X�(k) + u

�
= (X 0WX)
�1
X 0Wy(k);

say.

1Fisher scoring generically iterates

�(k+1) = �(k) +
�
�E

@2 logL

@�@�0
����

�=�(k)
�
�1
@ logL(�(k); y)

@�

Hence it is a particular case of the quasi-Newton method.
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exercise

Suppose we wish to model durations of employment,yi; as a function of some (assumed fixed) explanatory variable,xi.
We suppose

f(yi;�) = �i exp(�yi�i); yi > 0; �i = exp(xi�);

andE(yi) = ��1i : Assume theyi are independent overi. Write down the model’s likelihood and find the score function
for �. Show that the log-likelihood is concave and hence suggest how you might numerically compute the ML estimator?

7.4.4 Asymptotic distribution

In our discussion of the asymptotic distribution of the ML estimator we have always assumed that the observations are

iid. This model does not have identical distributions, although the independence across individuals remains.
The average expected information per observation is

1
n

E
�
@ logL

@�

@ logL

@�0
�

=
1

n

nX
i=1

E
�
@ logL(�;Yi)

@�

@ logL(�;Yi)

@�0

�
=

1
n

X 0WX:

Now suppose that

lim
n!1

1
n

E
�
@ logL

@�

@ logL

@�0
�

=M > 0;

then we have that p
n

�b� � �
�
d! N
�
0;M�1

�
:

This result will hold as long asM is finite and positive semi-definite. This will happen as long as the expected information
per observation

E
�
@ logL(�;Yi)

@�

@ logL(�;Yi)

@�0

�

is always strictly positive and bounded.

7.5 Generalized Least Squares and instrumental variables

7.5.1 Generalized Least Squares, GLS

Since
 is p.d, the inverse exists and is also p.d. Therefore, there exists a nonsingular matrixP so that


�1 = P 0P :

This gives

^� = (X 0P 0PX )�1X 0P 0Py = f(PX )0(PX )g�1(PX )0(Py):

This would have been obtained from the regression ofPy onPX . To deal with the nonspherical model, pre-multiply

y = X� + u byP so that

y� = X�� + u�

wherey� = Py ,X� = PX andu� = Pu . Since,
 = P�1(P 0)�1,

var(u�) = E(Puu 0P 0) = �2P
P 0 = �2I ;

satisfying the conditions under which OLS is BLUE. TheGLSestimator is defined as

~�GLS = (X�
0X�)
�1X�
0y� = (X 0
�1X )�1(X 0
�1y)

so that
var( ~�GLS) = �2(X 0
�1X )�1
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which is also the asymptotic variance matrix had we adopted the ML approach. An unbiased estimate of�2 can be
obtained from OLS applied to the transformed model

s2 = (y� �X� ~�GLS)
0(y� �X� ~�GLS)=(n� k)

= fP(y �X ~�GLS)g0fP(y �X ~�GLS)g=(n� k)

= (y �X ~�GLS)
0
�1(y �X ~�GLS)=(n� k);

which differs from the biased MLE^�2 by the factorn=(n � k). To test the finite sample restrictionH0 : R� = r , the
test can be based on

F =
(r �R ~�GLS)
0fR(X 0
�1X )�1R0g�1(r �R ~�GLS)=q

s2

� Fq;n�k:

Note that we could have also writtenu asu � N(0 ;V ) (whereV = �2
), so that,

~�GLS = (X 0V�1X )�1X 0V�1y

var( ~�GLS) = (X 0V�1X )�1:

7.5.2 Instrumental Variable (IV) estimators

If the condition stating that the regressors and the disturbance are independent does not hold, then the OLS estimators are
biased and inconsistent. As an example, consider theerrors in variablesproblem,

y = x� + u

without a constant term, but that the variables are measured with error, that is,

x = ~x+ v

so that y = �~x+ u

whereu, ~x andv are mutually independent. This scenario is classic under models withmeasurement error. The OLS
equations give

^� =

P
yixiP

x2i
=

P
xi(�~xi + ui)P

x2i

= �
P
xi~xiP

x2i
+

P
xiuiP

x2i
:

If the second moments and their plims’s exist, then,

plim

�
1

n
X
x2i

�
= �2~x + �2v

plim

�
1

n
X
xi~xi

�
= �2~x

plim

�
1

n
X
xiui

�
= 0

giving

plim^� = �
�
�2~x

�2~x + �2v
�

:

Hence OLS is biased and inconsistent. Suppose we now re-write the model as

y = �x+ (u� �v)

so that

^� = � +
P
xi(ui � �vi)P

x2i

;
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