
Chapter 8

Testing

8.1 Basic testing definitions

Think about the testing problem
H0 : θ = θ0 against H1 : θ �= θ0.

We call H0 a simple null as it involves specifying the value of θ complete, while the alternative is called composite. There
are four basic outcomes of this type of testing problem:

• H0 is true, and we correctly accept it
• H0 is true, but we reject it!
• H0 is false, and we correctly reject the hypothesis
• H0 is false, and we accept H0.

Hence in this problem there are two types of errors and two type of correct decisions. This is presented in stylized
form in Table 8.1.

TRUTH
H0 H1

ACCEPT H0 � × (Type 2 error)
ACCEPT H1 (Significance level) × (Type 1 error) � (Power)

Table 8.1 Stylised presentation of the testing problem. TRUTH denotes the state of nature, while ACCEPT denotes which
hypothesis is accepted..

8.1.1 Testing errors

If we base tests on random data then it is inevitable that we will sometimes reject the null hypothesis when it is true. What
is important, is to know and control the chance of making this type of error. This problem, is called a Type 1 error. The
probability of making an error of this type is called the significance level. Frequently this is written as

Pr(rejecting H0|H0 is true) = α,

where α is the significance level. In many econometric problems a conventional choice for α would be 0.05, although it
is an arbitrary selection.

Given a particular significance level, it would be attractive if the other type of error, rejecting H 0 when it is false, was
low. This type of error is called a Type 2 error.

8.1.2 Power functions

A counterpart of a Type 2 error, is the correct rejection of H 0. The probability of making this decision is called the power
function

Power(θ1) = Pr(rejecting H0|true value of θ is θ1).
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The probability of a type 2 error is 1 − Power(θ1). Typically, for a given value of α it is a good thing to have the power
function as high as possible for all values of θ1 �= θ0. Such a test might be described as being powerful. If a particular
test has Power(θ1) higher than for any other test for a specific value of θ 1 then the test is described as being ‘most
powerful’ for θ1. If the test is most powerful for all values of θ1, which are valid under the alternative, then the test is
called uniformly most powerful (UMP).

Example

Suppose Yi ∼ NID(µ, 1), then
√
n(Y − µ) ∼ N(0, 1). Further, assume H0 : µ = 5, against an alternative H1 : µ �= 5.

Then

T =
√
n(Y − 5) ∼

H0
N(0, 1),

and we reject H0 when |T | > C where the critical value C is such that Pr(|T | > C) = α. The power is the probability
of |T | > C under the alternative. So

T =
√
n(Y − µ) +

√
n (µ− 5) ∼ N(

√
n (µ− 5) , 1).

So the power is a function of µ and increases above α whenever µ is not 5. We call the graph of power against µ the
power function. If µ > 5 then the mean of the normal goes to infinity as n → ∞, while if µ < 5 the mean goes to minus
infinity. In both cases the power goes to one in the limit for all points under the alternative.

8.1.3 Neyman-Pearson lemma

For the very special case of the simple null H0 : θ = θ0 against the simple alternative H1 : θ = θ1 it is possible to derive
the most powerful test (for a given size) using the Neyman-Pearson lemma. It states that the most powerful test of the null
is based on the likelihood ratio

lr(y) =
f(y; θ1)
f(y; θ0)

,

rejecting the null if lr(y) is big. Recall one of the justifications of the likelihood was as a measure of plausibility, so
this rejects the null if the data implies θ1 is a more plausible parameter than θ1. A proof of this theorem is given in, for
example, Cox and Hinkley (1974, p. 92).

This setup can be generalized to the composite alternative H1 : θ > θ1. Use the Neyman-Pearson lemma on the
alternative θ∗1 , which is bigger than θ0. Then the likelihood ratio test is the most powerful. But this test results whatever
the value of θ∗1 we choose as long as its bigger than θ0. Hence the test is lr(y) is uniformly most powerful against the
composite alternative H1 : θ > θ1. Extending this result to more complicated problems is difficult and so this setup is
only rarely used in econometrics.

Exercise

State and prove the Neyman-Pearson lemma. Use it to construct the uniformly most powerful test of H 0 : θ = 0 against
H1 : θ > 0, where Yi ∼ NID(θ, σ2) for a known σ2. Can you use it to derive a test of the more complicated form
H0 : θ = 0 against H1 : θ �= 0?

Instead testing is dominated by three broad ways of constructing: likelihood ratios, Wald tests and score tests.

8.2 Likelihood ratio tests

As likelihood can be thought of as plausibility, we could look at the distance between θ and θ̂, the best estimate under H1,
by the difference in likelihoods. Another motivation is via the Neyman-Pearson lemma. The test is

LR = 2{logL(θ̂; y) − logL(θ0; y)} d→
H0

χ2 dim(θ).
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This is convenient as it gives us a general method for composite alternatives and derives the required distribution under
the null. We will work with dim(θ) = 1 and start-off with

logL(θ0; y) = logL(θ̂; y) + (θ0 − θ̂)
∂ logL

∂θ

∣∣∣∣
θ=bθ

+
1
2
(θ0 − θ̂)2

∂2 logL

∂θ2

∣∣∣∣
θ=bθ

+ ..

� logL(θ̂; y) + 1
2{

√
n(θ0 − θ̂)}2 1

n

∂2 logL

∂θ2

∣∣∣∣
θ=bθ

.

As θ̂ → θ0, so
1
n

∂2 logL(θ̂;Y )
∂θ2

p→
H0

−V ar

{
∂ logL(θ;Yi)

∂θ

∣∣∣∣
θ=θ0

}
,

minus the information per observation. The implication is that, as

√
n(θ0 − θ̂) d→

H0
N

0, V ar

{
∂ logL(θ;Yi)

∂θ

∣∣∣∣
θ=θ0

}−1


so
2{logL(θ̂; y) − logL(θ0; y)} d→

H0
χ2

1.

In the more general case, the same result holds (χ2
dim(θ)) using quadratic of normals being χ2 distributed.

8.3 Wald tests

Perhaps a more intuitively simple test can be based around the distribution of

√
n(θ̂ − θ0)

d→
H0

N

[
0,
{
V ar

(
∂ logL(θ;Yi)

∂θ

)}−1
]
.

In the univariate case we could use the t-statistic version
√
n(θ̂ − θ0)[

V ar
{

∂ log L(θ;Yi)
∂θ

}]−1/2

d→
H0

N(0, 1)

but a more standard option is to work with a quadratic form version

√
n(θ̂ − θ0)′

[
V ar

{
∂ logL(θ;Yi)

∂θ

}]√
n(θ̂ − θ0)

d→ χ2
1 dim(θ),

for this works nicely in the vector case.

8.4 Score or Lagrange multiplier test

Perhaps the least obvious of our three tests looks at how far the score

∂ logL(θ; y)
∂θ

∣∣∣∣
θ=θ0

is from zero (at θ̂, the score is defined as zero). We know

√
n

{
1
n

∂ logL(θ0;Y )
∂θ

}
d→ N

[
0,
{
V ar

∂ logL(θ0;Yi)
∂θ

}]
so consequently the obvious test is to work with{√

n
1
n

∂ logL(θ0; y)
∂θ

}′{
V ar

∂ logL(θ0;Yi)
∂θ

}−1{√
n

1
n

∂ logL(θ0; y)
∂θ

}
d→

H0
χ2

1 dim(θ).
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Example

Here we construct the score test for the Gaussian first order autoregression (written AR(1)) case y t = θyt−1 + εt, εt ∼
NID(0, 1) where H0 : θ = 0 against H1 : θ �= 0. In particular we use the conditional likelihood log f(y2, ..., yn|y1; θ)
which equals

n∑
t=2

log f(yt|yt−1, ..., y1; θ) = const− 1
2

n∑
t=2

(yt − θyt−1)
2
.

The score is

∂ log f(y2, ..., yn|y1; θ)
∂θ

=
n∑

t=2

yt−1 (yt − θyt−1)

=
H0

n∑
t=2

yt−1yt

and the observed information is

−
n∑

t=2

y2
t−1.

The information, in the sample, is

−E

n∑
t=2

y2
t−1 =

H0
− (n− 1) .

As a result the score test equals

S =

(
√
n− 1

1
n− 1

n∑
t=2

yt−1yt

)
(1)−1

(
√
n− 1

1
n− 1

n∑
t=2

yt−1yt

)

=
1

n− 1

(
n∑

t=2

ytyt−1

)2

�
H0

n

(∑n
t=2 ytyt−1∑n
t=2 y2

t−1

)2

→
H0

χ2
1.

We note that
∑n

t=2 ytyt−1/
∑n

t=2 y2
t−1 is, roughly, the correlation between {yt, yt−1}. This is called the serial correlation

coefficient at lag one and written as r1.

Example

We construct the score test for yt = µ + θyt−1 + εt, εt ∼ NID(0, 1) where H0 : θ = 0 against H1 : θ �= 0, using the
conditional likelihood

n∑
t=2

log f(yt|yt−1, ..., y1; θ, µ) = const− 1
2

n∑
t=2

(yt − µ− θyt−1)
2
.

The score is
∂ log f(y2,...,yn|y1;θ,µ)

∂θ

∣∣∣
θ=0

=
∑n

t=2 (yt − µ) yt−1

∂ log f(y2,...,yn|y1;θ,µ)
∂µ

∣∣∣
θ=0

=
∑n

t=2 (yt − µ) .

Then µ̃ = y, is the MLE under the constraint of the null. The second derivative matrix is

−
{ ∑n

t=2 y2
t−1

∑n
t=2 yt−1∑n

t=2 yt−1 (n− 1)

}
.

This has an expected value of

−
{

(n− 1) 0
0 (n− 1)

}
.
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So the score test is

S =

{
√
n− 1

1
n− 1

n∑
t=2

yt−1 (yt − y)

}
(1)−1

{
√
n− 1

1
n− 1

n∑
t=2

yt−1 (yt − y)

}

=
1

n− 1

{
n∑

t=2

yt−1 (yt − y)

}2

=
1

n− 1

{
n∑

t=2

(yt−1 − y) (yt − y)

}2

�
H0

n

{∑n
t=2 (yt−1 − y) (yt − y)∑n

t=2 (yt−1 − y)2

}2

→
H0

χ2
1.

Exercise

Construct the score test for the dynamic regressior model y t = x′
tβ + θyt−1 + εt, εt ∼ NID(0, 1) where H0 : θ = 0

against H1 : θ �= 0. We regard the regressors as fixed in this exercise. Use the conditional likelihood

n∑
t=2

log f(yt|yt−1, ..., y1; θ, β) = const− 1
2

n∑
t=2

(yt − x′
tβ − θyt−1)

2
.

Example

Construct the score test for the Gaussian AR(p) process

yt = θ1yt−1 + ... + θpyt−p + εt, εt ∼ NID(0, 1),

where H0 : θ1 = ... = θp = 0. The test should be based on the conditional log-likelihood function
log f(yp+1, ..., yn|y1, ..., yp; θ). This has the form of

n∑
t=p+1

log f(yt|yt−1, ..., y1; θ) = const− 1
2

n∑
t=p+1

(yt − θ1yt−1 − ...− θpyt−p)
2
.

The score vector is

∂ log f(yp+1, ..., yn|y1, ..., yp; θ)
∂θ

=


∑n

t=p+1 (yt − θ1yt−1 − ...− θpyt−p) yt−1∑n
t=p+1 (yt − θ1yt−1 − ...− θpyt−p) yt−2

...∑n
t=p+1 (yt − θ1yt−1 − ...− θpyt−p) yt−p



=


∑n

t=p+1 ytyt−1∑n
t=p+1 ytyt−2

...∑n
t=p+1 ytyt−p

 .

The second derivative matrix is

∂2 log f(yp+1, ..., yn|y1, ..., yp; θ)
∂θ∂θ′

= −


∑n

t=p+1 y2
t−1

∑n
t=p+1 yt−1yt−2 · · · ∑n

t=p+1 yt−1yt−p∑n
t=p+1 yt−1yt−2

∑n
t=p+1 y2

t−2 . . .
∑n

t=p+1 yt−2yt−p

...
...

. . .
...∑n

t=p+1 yt−1yt−p

∑n
t=p+1 yt−2yt−p · · · ∑n

t=p+1 y2
t−p

 .

The expectation of this matrix is, under the null (n − p)I as E(y tyt−p) = 0 for all p not equal to zero and E(y2
t ) = 1.

Then the score test is

S =
1

(n− p)


(

n∑
t=p+1

yt−1yt−2

)2

+ ... +

(
n∑

t=p+1

yt−1yt−p

)2

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
(∑n

t=p+1 yt−1yt−2∑n
t=p+1 y2

t−1

)2

+ ... +

(∑n
t=p+1 yt−1yt−p∑n

t=p+1 y2
t−1

)2


= n
(
r2
1 + ... + r2

p

)→ χ2
p.

8.5 Comparisons

All the tests have the same asymptotic distribution under the null. In some sense the LR test must be the preferred one as
it evaluates the likelihood under H0 and H1. However, the Wald and score are simpler.

LR evaluates θ0 and θ̂ evaluates under H0 + H1

Wald computes θ̂ evaluate under H1

Score uses just θ0 evaluate under H0

From a computational viewpoint the score is most useful as it does not need to evaluate θ̂, which for complicated
models can be hard.

Exercise

Construct the score, Wald and likelihood ratio tests for H0 : θ = 0 against H1 : θ �= 0, where Yi ∼ NID(θ, σ2) for a
known value of σ2. Compare the exact distribution of these tests to their asymptotic approximations. How do these tests
change when σ2 is unknown?

Finally, these arguments are based on asymptotic theory and so tend to be poor if n is small. Improvements, via higher
order expansions, are possible. In the LR case they are particularly easy, using the Bartlett adjustment. The score test can
be corrected using a similar but more complicated argument, while the Wald test is hard to correct. This type of work is
discussed in Barndorff-Nielsen and Cox (1994).

8.6 Tests of the multiple linear regression model

8.6.1 Testing linear hypotheses about β

The general linear framework is:
Rβ = r

where R is a (q × k) matrix of known constants, with q < k and r is a (q × 1) vector of known constants. This can be
stated as

H0 : Rβ − r = 0 .

Examples of typical hypotheses are:

• H0 : βi = 0; Xi has no influence on Y .

R =
(

0 ... 0 1 0 ... 0
)

r = 0 q = 1

• H0 : βi = βi0; where βi0 has a specific value

R =
(

0 ... 0 1 0 ... 0
)

r = βi0 q = 1

with 1 in the ith position
• H0 : β2 + β3 = 1; e.g. constant returns to scale for β2 = production and β3 = labour elasticities in a production

function
R =

(
0 1 1 0 ... 0

)
r = 1 q = 1
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• H0 : β3 = β4 or β3 − β4 = 0; X3 and X4 have the same coefficient.

R =
(

0 0 1 −1 0 ... 0
)

r = 0 q = 1

• H0 : βj = 0 for j = 2, ..., k; tests the significance of the overall relation.

R =
(

0 Ik−1

)
r = 0 q = k − 1

• H0 : β2 = 0; a specified subset of regressors plays no role in determining Y . where 0 is a vector of k − 1 zeros

R =
(

0k2×k1 Ik2

)
r = 0 q = k2.

Since E(Rβ̂) = Rβ and var(RX̂ )−1R′, (check), on making an assumption on the form of the sampling distribution of
u , we can obtain the sampling distribution of R β̂. Suppose

u ∼ N(0 , σ2I )

then

β̂ ∼ N{β, σ2(X ′X )−1}
Rβ̂ ∼ N{Rβ, σ2R(X ′X )−1R′}

R(β̂ − β) ∼ N{0 , σ2R(X ′X )−1R′}.

If H0 is true then

(Rβ̂ − r) ∼ N{0 , σ2R(X ′X )−1R′}

verify that

(Rβ̂ − r)′{σ2R(X ′X )−1R′}−1(Rβ̂ − r) ∼ χ2
q.

Since
e ′e
σ2

∼ χ2
n−k,

under the Null hypothesis

(Rβ̂ − r)′{R(X ′X )−1R′}−1(Rβ̂ − r)/q
e ′e/(n− k)

∼ Fq,n−k (8.1)

and the null hypothesis is rejected if the computed F value exceeds a preselected critical value.

Example

Suppose we wish to test H0 : βi = 0, then equation (8.1) becomes

F =
β̂2

i

σ̂2cii
=

β̂2
i

var(β̂i)
∼ F1,n−k

where cii is the element picked out by R(X ′X )−1R′ and Rβ̂ picks out β̂i. Taking the square root

t =
β̂i

σ̂
√

(cii)
=

β̂i

s.e.(β̂i)
∼ t1

a t-test. A single hypothesis allows either the t or F tests to be implemented.
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Example: Composite hypothesis

To test H0 : β2 = β3 = ... = βk = 0, first partition X as [i X2], where i is the unit vector and X2 contains the k − 1
regressor coefficients.

X ′X =
(

i ′

X ′
2

)(
i X2

)
=
(

n i ′X2

X ′
2 X ′

2X2

)
Using the formula for inverted partitioned matrices, we can find the k − 1 submatrix picked out by R(X ′X )−1R′ and
express it as (

X ′
2X2 −X ′

2in
−1i ′X2

)−1
=
(

X ′
2AX2

)−1
=
(

X ′
∗X∗

)−1

where A transforms observations into deviation form defined by A = In − (1/n)ii ′, and X∗ = AX2. Since Rβ̂ = β̂2,
the numerator of (8.1) is β̂2X

′
∗X∗β̂2 which is just the ESS. So the F statistic for testing the joint significance of the

complete set of regressors is

F =
ESS/(k − 1)
RSS/(n− k)

=
R2/(k − 1)

(1 −R2)/(n− k)
∼ Fk−1,n−k.

8.6.2 Restricted and unrestricted regressions

In restricted regression, restrictions in H0 are imposed on estimated equation.

Example: fitting restricted regression

The regression in deviation form is
yi = β̂2xi,2 + β̂3xi,3 + ei

and we impose β2 + β3 = 1. This gives

yi − xi,3 = β̂2(xi,2 − xi,3) + e∗i

forming new variables (yi − xi,3) and (xi,2 − xi,3) where regression of first variable on second (without intercept term)
gives restricted estimate of β̂2. Restricted RSS is denoted by e ′

∗e∗. General approach: requires β̂∗ vector that minimizes
RSS subject to restrictions, Rβ̂∗ − r . Set up Lagrangian function

φ = (y −X β̂∗)′(y −X β̂∗) − 2λ′(Rβ̂∗ − r)

where λ is (q × 1) vector of Lagrange multipliers. Solving F.O.C’s gives

β̂∗ = β̂ + (X ′X )−1R′{R(X ′X )−1R′}−1(r −Rβ̂).

The residuals from the restricted and unrestricted regressions can be used to obtain the test statistic by noting that

e ′
∗e∗ − e ′e = (r −Rβ̂)′{R(X ′X )−1R′}−1(r −Rβ̂)

so that,

F =
(e ′

∗e∗ − e ′e)/q
e ′e/(n− k)

∼ Fq,n−k.

8.6.3 Prediction

A Point prediction of Y conditional on some information (e.g. newly observed X’s), is given by

Ŷf = β̂1 + β̂2X2,f + ... + β̂kXk,f = c′β̂

which is an optimal predictor of E(Yf ), (by Gauss Markov). To obtain a confidence interval, suppose Y f = c′β + uf ,
then

ef = Yf − Ŷf = uf − c′(β̂ − β).

The t-statistic is
Ŷf − Yf

s
√

1 + c′(X ′X )−1c
∼ tn−k

since var(ef ) = σ2{1 + c′(X ′X )−1c}.



8.6 Tests of the multiple linear regression model 83

8.6.4 Are assumptions underlying OLS valid for given a data set?

If any of the underlying assumptions are wrong, then there is a specification error. These include possible problems with
u , X and/or β.

8.6.4.1 Problems with u

(1) If ui ∼ iid(0, σ2), but not normal, then BLUE properties still hold, but inference procedures only asymptotically
valid.

(2) Heteroscedasticity: E(uu ′) = diag(σ2
1 , ..., σ

2
n). Assumption of homoscedasticity violated.

(3) Autocorrelated disturbances: E(utut−s) �= 0 for s �= 0.

8.6.4.2 Problems with E(Y |X ) and/or X

(1) Specification problem: exclusion of relevant variables.
(2) Inclusion of irrelevant variables.
(3) Incorrect functional form.
(4) X matrix has less than full column rank: collinearity problem.
(5) E(Xi,tus) �= 0: if lagged values of dependent variable appear as regressors that are correlated with past disturbances

but not current or future disturbances, then OLS is biased but consistent and asymptotically normal. If a regressor is
correlated with current disturbance (e.g. measurement error in regressor) then OLS is both biased and inconsistent.

(6) Nonstationary variables: inference procedures are nonstandard, e.g. cointegration, integrated variables, error cor-
rection models.

8.6.4.3 Problems with β

Structural breaks: β is not constant over the sample period.

8.6.5 Iterative approach to model building

Three stage procedure based on identification, estimation and diagnostic tests. See for example, Box, Jenkins and Reinsel
(1994) and for diagnostic tests, see Doornik and Hendry (1994). Aim is to find a model that is ”approximately” correct.

(1) Identification: use of data and information on how series is generated in order to suggest parsimonious class of
models to be considered. For example, one could formulate a model, look at scatter plots, residuals, correlograms,
etc.

(2) Estimation: efficient use of data to make inferences about parameters conditional on adequacy of model being
considered. Are the coefficients reasonable; is the relationship statistically significant?

(3) Diagnostic checking: compare fitted model to data with intent to reveal model inadequacies; improve model. Look
at predictive performance etc.

8.6.6 Tests of parameter constancy

β should apply both outside and within sample data: test predictive accuracy.

8.6.6.1 Chow forecast test

‘Large’ prediction errors cast doubt on constancy hypothesis. Divide data set of n observations into n 1 to be used for
estimation and n2 = n− n1 to be used for testing. Partition X and y into [X1, X2] and [y1, y2].

(1) Estimate OLS from n1 obs, obtaining
β̂1 = (X ′

1X1)−1X ′
1y1.

(2) Obtain prediction of y2 vector, ŷ2 = X2β̂1.
(3) Obtain vector of prediction errors, d , and analyze sampling distribution under H 0: parameter constancy.
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Suppose vector of prediction errors is
d = y2 − ŷ2 = y2 −X2β̂1,

then if y = Xβ + u , with E(uu ′) = σ2I holds for both data sets then,

d = y2 −X2β̂1 = u2 −X2(β̂1 − β)

It can be shown that E(d) = 0 and var(dd ′) = σ2{In2 + X2(X ′
1X1)−1X ′

2}. If we assume d ∼ N{0 , var(d)}, then
under the hypothesis of parameter constancy,

F =
d ′{In2 + X2(X ′

1X1)−1X ′
2}−1d/n2

e ′
1e1/(n1 − k)

∼ Fn2,n1−k

where e ′
1e1 is the RSS from the estimated regression.

Note: one can also obtain the test in terms of the restricted and unrestricted regression.

8.6.6.2 Hansen test

A difficulty with the Chow test is that the null hypothesis may be rejected for for certain partitionings and not for others.
The Hansen test fits the linear equation to all n observations and so avoids this problem. These consist of tests for stability
of each parameter and of overall parameter stability. OLS fit gives

n∑
t=1

xi,tet = 0

n∑
t=1

(e2
t − σ̂2) = 0

where σ̂2 =
∑n

t=1 e2
t/n. Defining

fi,t =
{

xi,tet i = 1, ..., k
e2

t − σ̂2 i = k + 1

gives
∑n

t=1 fi,t = 0 for i = 1, ..., k + 1. Hansen test is based on cumulative sums

Si,t =
t∑

j=1

fi,j .

Individual test statistics are

Li =
1

nVi

n∑
t=1

S2
i,t

where Vi =
∑n

t=1 f2
i,t and the test for joint stability is

Lc =
1
n

n∑
t=1

s′tV
−1st

where

st =
(

S1,t ... Sk+1,t

)′
ft =

(
f1,t ... fk+1,t

)′
V =

n∑
t=1

ftf
′
t.

Under null hypothesis, the cumulative sums will tend to be distributed around zero, so that ‘large’ values of the test
statistics suggest rejecting H0.
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8.6.6.3 Test based on recursive estimation

Write the model as yt = x ′
tβ + ut where x ′

t = [1 x2,t ... xk,t] so that the observations are assumed to be ordered over
time. Fit model to first k observations, next use k + 1 observations and compute coefficient vector again. Proceed for all
n observations to generate sequence of vectors β̂k, β̂k+1, ..., β̂n. Standard errors can be computed at each stage except
for the first (RSS is zero for t = k). Plots of the parameters (plus and minus two s.e’s) can be analyzed for parameter
constancy.

8.6.6.4 One step-ahead prediction errors

The one step-ahead prediction error is defined as

vt = yt − x ′
t β̂t−1

with variance
var(vt) = σ2{1 + x ′

t(X
′
t−1Xt−1)−1xt}.

σ2 can be replaced by the residual variance estimated from (t−1) observations, provided t−1 > k. The square root gives
the estimated s.e. of regression. Plus or minus twice these can be plotted around the zero line with the actual prediction
errors - residuals outside s.e. bands are suggestive of parameter inconstancy.

See Johnston and Dinardo (1997, pp. 119-121), for CUSUM, CUSUMSQ tests and the Ramsey Reset test.

8.6.7 Tests of structural change

A structural change or break occurs if parameters underlying specified relationship differs between different subsets of
data. Suppose n = n1 + n2 and that we have data Xi,yi for i = 1, 2.

8.6.7.1 Example: three formulations for testing one structural change

Unrestricted model is: (
y1

y2

)
=
(

X1 0

0 X2

)(
β1

β2

)
+ u where u ∼ N(0 , σ2I )

Fitting this equation gives the unrestricted RSS, e ′e . The null hypothesis of no structural break is H0 : β1 = β2. Writing
OLS coefficients as (

β̂1

β̂2

)
=
(

X ′
1X1 0

0 X ′
2X2

)−1(
X ′

1y1

X ′
2y2

)
=
(

(X ′
1X1)−1X ′

1y1

(X ′
2X2)−1X ′

2y2

)
we can either estimate the model by running the OLS estimation once, or by fitting each equation separately. The unres-
tricted RSS can be obtained as e ′e = e ′

1e1 + e ′
2e2.

The restricted model can be written as (
y1

y2

)
=
(

X1

X2

)
β + u

giving an alternative formulation for testing H0 : β1 = β2 as

F =
(e ′

∗e∗ − e ′e)/k
e ′e/(n− 2k)

∼ Fk,n−2k.

It is also possible to consider an alternative setup of the unrestricted model(
y1

y2

)
=
(

X1 0

X2 X2

)(
β1

β2 − β1

)
+ u

so that testing H0 is equivalent to testing the joint significance of the k regressors.
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8.6.7.2 Tests for intercepts, slope coefficients and parameters

Suppose we define
X1 =

(
i1 X ∗

1

)
and X2 =

(
i2 X ∗

2

)
where i1, i2 are n1 and n2 vector of ones and the X ∗

i are matrices of the k− 1 regressor variables. We can consider three
types of models:

I :
(

y1

y2

)
=
(

i1 X ∗
1

i2 X ∗
2

)(
α

β∗

)
+ u common parameters

II :
(

y1

y2

)
=
(

i1 0 X ∗
1

0 i2 X ∗
2

) α1

α2

β∗

+ u
Differential intercepts,
common slope vectors

III :
(

y1

y2

)
=
(

i1 0 X ∗
1 0

0 i2 0 X ∗
2

)
α1

α2

β∗
1

β∗
2

+ u
Differential intercepts,
differential slope parameters

Application to each will yield RSS with the associated degree of freedom n− k, n− k− 1 and n− 2k. The test statistics
for various hypotheses are then given by

• Test of differential intercepts H0 : α1 = α2

F =
RSS1 − RSS2

RSS2/(n− k − 1)
∼ F1,n−k−1

• Test of differential slope vectors H0 : β∗
1 = β∗

2

F =
(RSS2 − RSS3)/(k − 1)

RSS3/(n− 2k)
∼ Fk−1,n−2k

• Test of differential parameters (intercepts and slopes) H0 : β1 = β2

F =
(RSS1 − RSS3)/k

RSS3/(n− 2k)
∼ Fk,n−2k

The degrees of freedom (d.o.f.) in the numerators are the number of restrictions imposed ingoing from the unrestricted
model to the restricted one; which is also equal to the difference in the d.o.f. of the RSS in the numerator.

8.7 Heteroscedasticity and autocorrelation

Additional references on these issues and others that will not be covered in this course can be found in White (1984) and
White (1998). When heteroscedasticity is present, (typically in cross-sectional data), the disturbance vector is

var(u) = E(uu ′) =


σ2

1 0 ... 0
0 σ2

2 ... 0
...

...
. . .

...
0 0 ... σ2

n

 = V .

There are now n + k unknowns; n unknown variances and k elements in the β vector. Additional assumptions (usually
made from the disturbance process) are needed in order to estimate the model. One could postulate that

σ2
i = σ2x2,i for i = 1, 2, ..., n

where σ2 is a scale factor and x2 is an explanatory variable. Then

var(u) = E(uu ′) = σ2


x2,1 0 ... 0
0 x2,2 ... 0
...

...
. . .

...
0 0 ... x2,n

 = σ2Ω .
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This reduces the parameters to be estimated to k + 1, but the assumption made on the disturbances is very strong; it is
important to test for heteroscedasticity and, if found, to explore its structure in order to derive feasible GLS estimators.

8.7.1 Properties of OLS estimators

The specified equation is
y = Xβ + u with E(u) = 0 and E(uu ′) = σ2Ω .

If X is nonstochastic, then the following hold,

• The OLS estimator is unbiased and consistent, (mean square consistent if the variance matrix, var( β̂) has a zero
plim).

• OLS estimator is inefficient. That is, linear, unbiased but not minimum variance estimators.
• OLS coefficient s.e’s are incorrect, and the test statistics based on these are invalid.1

The variance matrix can be expressed as

var(β̂) =
σ2

n︸︷︷︸
p→0

(
X ′X
n

)−1

︸ ︷︷ ︸
(1)

(
X ′ΩX

n

)
︸ ︷︷ ︸

(2)

(
X ′X
n

)−1

.

Consistency requires both (1) and (2) to have finite plims. (1)
p→ finite matrix, if the regressors are stationary. (2)

p→
finite in general, if elements of Ω are finite. If the X matrix contains one or more lags of the dependent variable, then the
OLS estimator will have a finite sample bias; but will be consistent if V is diagonal. Autocorrelated disturbances cause
off-diagonal elements in V to be non-zero; combined with the X matrix containing one or more lagged y ’s, the estimator
will be inconsistent.

One can still carry out OLS in the presence of heteroscedasticity, though for valid inference, the correct form for
var(β̂) would have to be implemented, with σ2Ω = diag {σ2

1 , σ
2
2 , ..., σ

2
n}, requiring n parameters to be estimated with

only n observations. White (1980) showed that looking at the problem in this way could be misleading and that the issue
that was important was finding a satisfactory estimate of X ′σ2ΩX , a k×k matrix, where k is independent of n. Suppose
x ′

t = [1, x2,t, ..., xk,t] is the t’th row of X , then

X ′σ2ΩX =


...

...
...

x1 x2 ... xn

...
...

...




σ2
1 0 ... 0
0 σ2

2 ... 0
...

...
. . .

...
0 0 ... σ2

n




... x ′
1 ...

... x ′
2 ...
...

... x ′
n ...


=

n∑
t=1

σ2
t xtx

′
t .

The White estimator replaces unknownσ2
t by e2

t , where et = yt−x ′
tβ̂, giving a consistent estimator of the variance matrix

for the OLS coefficients and is useful as it does not require any specific assumption on the form of heteroscedasticity. An
estimate of var(β̂) is then given by

ˆvar(β̂) = (X ′X )−1X ′σ2Ω̂X (X ′X )−1

σ2Ω̂ = diag {e2
1, e

2
2, ..., e

2
n}.

1The correct variance matrix for the OLS coefficient vector is

var(β̂) = E{(β̂ − β)(β̂ − β)′}
= E{(X ′X )−1X ′uu ′X (X ′X )−1}
= σ2(X ′X )−1X ′ΩX (X ′X )−1.

The conventional formula calculates σ2(X ′X )−1, which is only part of the correct expression; so conventional test statistics are
invalidated.
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The square roots of the elements on the diagonal of var( β̂) are the estimated s.e’s of the OLD coefficients, referred
to as heteroscedasticity consistent s.e’s (HCSE’s). The usual t and F tests are valid asymptotically. and general linear
hypotheses can be tested using the Wald statistic.

8.7.2 Some tests for heteroscedasticity

Since OLS can be inefficient, it can be important to test for the presence of heteroscedasticity. A brief outline of the White
test, Breusch-Pagan/Godfrey test, and the Goldfeld-Quandt test will be given. Other tests which will not be covered in
this course include the Bartlett test, Szroeter’s class of tests and some nonparametric tests. For further information on
these, consult Johnston and Dinardo (1997, Ch. 6), or Judge, Griffiths, Hill, Lütkepohl and Lee (1980, Ch. 11).

8.7.2.1 The White test

The aim is to compute the auxiliary regression of the squared OLS residuals on a constant and a set of variables (the
regressors, their squares and their cross products). Suppose

x ′
t =
(

1 x2,t x3,t

)
then there are effectively 9 possible variables, except that the square of 1 is 1 and the crossproduct of 1 with the x variables
replicates them, so that the set becomes(

1 x2,t x3,t x2
2,t x2

3,t x2,tx3,t

)
.

The regression is thus e2
t on this set. On the hypothesis of homoscedasticity, nR2 ∼ χ2

5 asymptotically, where the d.o.f’s
are the number of variables in the regression excluding the constant. In general, under the null of homoscedasticity,

nR2 ∼ χ2
q.

One problem with the White test is that the d.o.f. may become rather large, which reduces the power of the test.

8.7.2.2 The Breusch-Pagan/Godfrey test

This is an example of the LM test. Suppose we consider y t = x ′
tβ + ut where

x ′
t =
(

1 x2,t x3,t ...xk,t

)
.

The heteroscedasticity is assumed to take the form

Eut = 0 for all t

σ2
t = Eu2

t = h(z ′
tα)

where z ′
t = [1, z2,t, ..., zp,t] is known, α = [α1, α2, ... , αp] is unknown, and h(·) is some unspecified function that

takes positive values. The null of homoscedasticity is thus

H0 : α2 = α3 = ... = αp = 0,

since then σ2
t = h(α1) =constant. The restricted model under H0 is then simply estimated by applying OLS on the

assumption of normally distributed disturbances. The test procedure is then carried out as,

(1) Obtain the OLS residuals, et = yt − x ′
t β̂ and an estimate σ̃2 =

∑
e2

t/n.
(2) Regress e2

t/σ̃
2 on zt by OLS and compute ESS.

(3) Under H0,
1
2

ESS
d→ χ2

p−1

which rejects homoscedasticity if some pre-specified critical value is exceeded.

(4) An asymptotically equivalent procedure is to regress e 2
t on zt; then nR2 d→ χ2

p−1 under H0.

The test requires knowledge of the z variables causing the heteroscedasticity.
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8.7.2.3 The Goldfeld-Quandt test

This is a finite-sample test, applicable if there is thought to be a single variable (typically one of the x’s) thought to be an
indicator of the heteroscedasticity. Suppose, σ 2

t is assumed to be positively related to the i’th regressor, X i. The test is
carried out in the following way,

(1) Re-order the obs. by the value of X i.
(2) Omit c central obs.
(3) Fit separate regressions by OLS on the first and last (n − c)/2 obs, provided (n − c)/2 exceeds the number of

parameters in the relation.
(4) If RSS1 denotes the RSS from the smaller Xi values and RSS2 denotes the RSS from the larger Xi values, then

R =
RSS2

RSS1
∼ F(n−c−2k)/2,(n−c−2k)/2

under homoscedasticity.

The power of the test depends on c; power being low if c is too large or c is too small. An ad-hoc procedure would be to
set c = n/3.

8.7.3 Autocorrelated disturbances

The pairwise autocovariances are defined by

γs = E(utut+s) for s = 0,±1,±2, ...

When s = 0, γ0 = E(u2
t ) = σ2

u. The autocorrelation coefficient at lag s is defined by

ρs =
cov (utut+s)√

var(ut)var(ut+s)

which reduces to
ρs =

γs

γ0

given homoscedasticity. We can express var(u) as

var(u) =


γ0 γ1 ... γn−1

γ1 γ0 ... γn−2

...
...

. . .
...

γn−1 γn−2 ... γ0

 = σ2
u


1 ρ1 ... ρn−1

ρ1 1 ... ρn−2

...
...

. . .
...

ρn−1 ρn−2 ... 1

 .

Without any further information, the estimation problem is intractable as there are n + k unknowns and only n obs. It is
important to test for autocorrelation as presence of autocorrelated disturbances could indicate an inadequate specification.

8.7.3.1 Forms of autocorrelation

What follows will be covered in detail during the time series course in the second term and so is only meant as an
introduction. The first-order autoregressive model, or AR(1) is defined as

ut = φut−1 + εt

where εt is N(0, σ2
ε ). Suppose, (for stationarity), that |φ| < 1. Then E(u t) = 0 and var(ut) = σ2

u = σ2
ε/(1 − φ2) so that

the autocorrelation coefficients are ρs = φs, for s ≥ 0. The variance-covariance matrix of u can be written as

var(u) = σ2
u


1 φ ... φn−1

φ 1 ... φn−2

...
...

. . .
...

φn−1 φn−2 ... 1

 ,
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so that there are only k + 2 parameters to be estimated and feasible GLS can be carried out. Another popular model is the
first order moving average model, or MA(1), defined by

ut = εt + θεt−1

where εt is defined as above. Then σ2
u = σ2

ε (1 + θ2), ρ1 = θ/(1 + θ2) and ρi = 0 for i ≥ 2.

8.7.4 OLS and autocorrelated disturbances

If OLS is applied when X is nonstochastic and the disturbances are autocorrelated, then the consequences are the same
as those under heteroscedasticity - unbiased, consistent but inefficient estimation and invalid inference procedures. See
Johnston and Dinardo (1997, pp. 177-178) for an example.

8.7.5 Testing for autocorrelated disturbances

Suppose y = Xβ + u and that ut = ρut−1 + εt. Under the null hypothesis of zero autocorrelation,

H0 : ρ = 0 vs. H1 : ρ �= 0

Testing the hypothesis involves the residuals (since the u’s are unobservable), e = y − X β̂. Since e = Mu , where
M = I −X (X ′X )−1X ′ (symmetric, idempotent and of rank n− k),

var(e) = E(ee ′) = σ2
uM .

As M is a function of the sample values of the explanatory variables, exact finite-sample tests on the e’s are impossible
to derive that will be valid for any X matrix. A brief outline of certain tests is outlined below, for further reference, see
Johnston and Dinardo (1997, pp. 179-187), or Judge et al. (1980, Ch. 8.4).

8.7.5.1 Durbin-Watson test

The Durbin Watson, or (DW) test statistic is computed from the OLS residuals e = y −X β̂, and is defined as

d =
∑n

t=2(et − et−1)2∑n
t=1 e2

t

and ranges between 0 and 4 with

• d < 2 for positive autocorrelation of the e’s
• d > 2 for negative correlation of the e’s
• d ≈ 2 for zero correlation of the e’s.

Since any computes d value depends on the associated X matrix, Durbin and Watson established upper (d U ) and lower
(dL) bounds for the critical values. To test the hypothesis of zero autocorrelation, the procedure is

(1) If d < dL, reject H0.
(2) If d > dU , do not reject H0.
(3) If dL < d < dU , the test is inconclusive.

Note: to apply DW’s test, a constant must be included in the regression and the test is only valid for nonstochastic X .

8.7.5.2 Breusch-Godfrey test

The procedure builds on the DW test and proceeds as follows:

(1) Apply OLS to the specified model to obtain the residuals e t.
(2) Regress et on [1 xt et−1] to find R2.
(3) Under H0, nR2 is asymptotically χ2

1.

Whereas the DW test suggests looking at the significance of the coefficient on e t−1, the Breusch-Godfrey (LM) test gives
nR2 as a test statistic with an asymptotic χ2 distribution. Both tests are asymptotically equivalent.
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8.7.5.3 Box-Pierce-Ljung statistic

The Box-Pierce Q statistic is based on the squares on the first p autocorrelation coefficients of the OLS residuals and is
defined as

Q = n

p∑
j=1

r2
j

where

rj =

∑n
t=j+1 etet−j∑n

t=1 e2
t

.

Under the null of zero autocorrelation, Q has a χ2
l distribution. The revised Ljung-Box statistic (which has better small

sample performance) is defined by

Q′ = n(n + 2)
p∑

j=1

r2
j

n− j
.


