Chapter 8
Testing

8.1 Basic testing definitions

Think about the testing problem
Ho:ﬁ:eoq;]ainstHl 9#0(}

We call Hy asimplenull asit involves specifying the value of # complete, while the dternativeis called composite. There
are four basic outcomes of this type of testing problem:

e H, istrue, and we correctly accept it

e Hyistrue, but wereject it!

e Hj isfalse, and we correctly reject the hypothesis
e Hisfase, and we accept H.

Hence in this problem there are two types of errors and two type of correct decisions. This is presented in stylized
formin Table 8.1.

TRUTH
Hy H,y
ACCEPT H, v x (Type 2 error)
ACCEPT H; (Significancelevel) | x (Type1 error) v (Power)

Table8.1 Stylised presentation of the testing problem. TRUTH denotesthe state of nature, while ACCEPT denoteswhich
hypothesisis accepted..

8.1.1Testingerrors

If we base tests on random data then it isinevitable that we will sometimes reject the null hypothesiswhen it istrue. What
isimportant, is to know and control the chance of making this type of error. This problem, is called a Type 1 error. The
probability of making an error of thistypeis called the significance level. Frequently thisis written as

Pr(rejecting Hy|H istrue) = a,

where « is the significance level. In many econometric problems a conventional choice for o would be 0.05, athough it
isan arbitrary selection.

Given aparticular significance level, it would be attractive if the other type of error, rejecting H  when it is false, was
low. Thistype of error is called a Type 2 error.

8.1.2 Power functions

A counterpart of a Type 2 error, is the correct rejection of H . The probability of making this decision is called the power
function
Power(6;) = Pr(rejecting Ho|true value of 6 is6;).
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The probability of atype 2 erroris1 — Power(6,). Typically, for agiven value of « it is agood thing to have the power
function as high as possible for all values of 6, # 6. Such atest might be described as being powerful. If a particular
test has Power(6,) higher than for any other test for a specific value of 6, then the test is described as being ‘most
powerful’ for 6. If the test is most powerful for al values of 6, which are valid under the aternative, then the test is
called uniformly most powerful (UMP).

Example

SupposeY; ~ NID(u, 1), then /n(Y — p) ~ N(0,1). Further, assume Hy : u = 5, against an dternative Hy : u # 5.
Then
T = V(Y —5) ~ N(0,1),
Ho
and we reject Hy when |T'| > C where the critical value C' is such that Pr(|T'| > C') = a. The power is the probability
of |T'| > C under the aternative. So

T = VA(Y - ) + Vit (u— 5) ~ N(vai (1~ 5), 1.

So the power is a function of p and increases above o whenever 1 is not 5. We call the graph of power against i the
power function. If > 5 then the mean of the normal goesto infinity asn — oo, whileif ;1 < 5 the mean goes to minus
infinity. In both cases the power goesto one in the limit for all points under the alternative.

8.1.3 Neyman-Pear son lemma

For the very specia case of the simple null Hy : 6 = 0, against the simple alternative H, : 0 = 6, itis possible to derive
the most powerful test (for agiven size) using the Neyman-Pearsonlemma. It states that the most powerful test of the null

is based on the likelihood ratio

fy;01)

f(y;00)’

rejecting the null if Ir(y) is big. Recall one of the justifications of the likelihood was as a measure of plausibility, so
this rejects the null if the dataimplies 6, is amore plausible parameter than 6. A proof of this theorem is given in, for
example, Cox and Hinkley (1974, p. 92).

This setup can be generalized to the composite aternative H, : 6 > 6,. Use the Neyman-Pearson lemma on the
alternative 67, which is bigger than 6. Then the likelihood ratio test is the most powerful. But this test results whatever
the value of 65 we choose as long as its bigger than 6. Hence the test is Ir(y) is uniformly most powerful against the
composite alternative H, : 6 > ¢,. Extending this result to more complicated problems is difficult and so this setup is
only rarely used in econometrics.

Ir(y) =

Exercise

State and prove the Neyman-Pearson lemma. Use it to construct the uniformly most powerful test of H : 6 = 0 against
Hy : 6 > 0, whereY; ~ NID(6,0?) for aknown o2. Can you use it to derive a test of the more complicated form
Hy: 0 =0aganst Hy : 0 # 07

Instead testing is dominated by three broad ways of constructing: likelihood ratios, Wald tests and score tests.

8.2 Likelihood ratio tests

Aslikelihood can be thought of as plausibility, we could look at the distance between 6 and §, the best estimate under H,
by the differencein likelihoods. Another motivation is viathe Neyman-Pearsonlemma. Thetest is

LR =2{log L(By) ~ log L(0: )} - x* dim(0).
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Thisis convenient as it gives us a general method for composite aternatives and derives the required distribution under
the null. We will work with dim(6#) = 1 and start-off with

~ ~ Olog L 1 ~, 0%logL
logL(0oiy) = logL(B:y) + (00 —0) —5p=| + 50000 55~
~ T los L =
~ logL(B;y) + S0y — )2~ T8Z ]
n 0 7

Asd — 6o, SO
10210g L(B:Y) »
w0 m

minus the information per observation. The implication is that, as

[ d1og L(6:Yy)
0,Var { T

Olog L(6;Y7)
a6

)
]

o~ d
2log L(B;y) —log L(0o; y)} 7> Xi-

In the more general case, the same result holds (Xﬁimw)) using quadratic of normals being 2 distributed.

V(o - ) & N

8.3 Wald tests

Perhaps a more intuitively simple test can be based around the distribution of

0, {Va,r (%ﬁﬂ) }71} .

In the univariate case we could use the t-statistic version
V(@ - 6o) a
. -1/2 g,
dlog L(6;Y;) 0
[var {2regie0 ]

but amore standard option is to work with a quadratic form version

SRty {V {alogw;m

00
for this works nicely in the vector case.

Vi@ —0o) & N

N(0,1)
}] VAl — 09) 4 3 dim(0),

8.4 Score or Lagrange multiplier test

Perhaps the |east obvious of our three tests looks at how far the score

dlog L(6;y)
a9

6=0¢

is from zero (at 0, the scoreiis defined as zero). We know

10logL(00;Y) | « dlog L(6o;Y:)
ﬁ{n a0 = N0 Var a0

so consequently the obvioustest is to work with

o ! : N RAR 5 .4
b} (o 60TV f GO0 4 )
n 0

1 dlog L(
{\/ﬁﬂ 00
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Example

Here we construct the score test for the Gaussian first order autoregression (written AR(1)) case y+ = Oy;—1 + &¢, ¢ ~
NID(0,1) where Hy : 0 = 0 against H; : 6 # 0. In particular we use the conditional likelihood log f(y2, ..., yn|y1; 6)
which equals

n

n 1 ‘
Zlogf(yf\yt_l, s y1;0) = const — = Z (ye — Hyi_l)z .
=2 2

t=2

Thescoreis

0log f(yz2, .-, Ynly1;6) i
=l Y = Yio1 (e — Oye—1)
t=2

00
n
= Z Yt—1Ye
=

and the observed informationis

Theinformation, in the sample, is

n
—EZy,?,l ;0 —(n—1).
t=2

Asaresult the score test equals

1 n » 1 n
S = (Vnilﬁ;yt—lyt)(l) (Vn*lnjfzzzyz—lyf

2
1 - Et"fzyfyz_l 2 2
— ~*>n|\ <z >S5 — — .
4(2”“ > o (2;;2;/3,1 M

Wenotethat ;" y:yi—1/ Y p0 y7_1 IS, roughly, the correlation between {y., y:—1 }. Thisis called the serial correlation
coefficient at lag one and written as .

Example

We construct the score test for y, = p + 0yi—1 + &4, ¢ ~ NID(0,1) where Hy : 6 = 0 against H; : § # 0, using the
conditional likelihood

(e — 1 — Oye)’.

M:

n

1
> " log f(yelys1, .. y150, ) = const — 3
t=2

=

Il
o

The scoreis
Srea (e — 1) Y1
= Z;’;z (yt - ;U') .

op 6=0

Then 1z = 7, isthe MLE under the constraint of the null. The second derivative matrix is

_{ YhaYi Yo Y1 }
PO T (n—1)

4G

This has an expected value of
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So the scoretest is

n

{\/H— >y (e - ?)} ™ {mﬁ 2 vy = y)}
= =

1
n—1 4

. 2
= 5 . I {Zyt—l (ye *?)}
t=2

2 2
L - Stes We—1 =) (4 —7) ;
-1 =9 W9 p =n =20 - — X7
n—1 Ho Yy (e —7)° Ho

S

t=

Exercise

Construct the score test for the dynamic regressior model v, = ;3 + 0y;—1 + &4, &, ~ NID(0,1) where Hy : 6 = 0
against H : 6 # 0. We regard the regressors as fixed in this exercise. Use the conditional likelihood

n T )
Zlogf(yﬂyt,l, <, y13 0, B) = const — 3 Z (ye — 48 — Gyi,l)z .
t=2 t=2

Example

Construct the score test for the Gaussian AR(p) process

Y = 01yt—1 + ... + Opys—p + 1,60 ~ NID(0,1),

where Hy : 6, = .. = 6, = 0. The test should be based on the conditional log-likelihood function
10g f(Yp+1, - Yn|y1, -5 yp3 0). This hasthe form of
n 1 n 9
> log f(rlyr-1s 13 0) = const — 5 Sy — 01 — o — Oy
t=p+1 t=p+1
The score vector is
Ztn:pﬂ (y¢ — 01yt—1 — oo — Opl—p) Y1
01og f(Ypt1, 0, Ynly1, -, Yp3 0) Diprr (@ — O1ye—1 — . — OpY—p) Y2
00 - :
Sotepit W = O1Yi—1 — . = OpYi—p) Yr—p

n TR
Zt:erl YtYt—1
n
Zf,:p+l YtYt—2

n
Zf,:p+1 YtYt—p

The second derivative matrix is

Z?:pﬂ y?—l ZIL:[H»I Yt—1Yt—2 - Z?:[H»l Yt—1Yt—p
5 n n 2 n
0%10g f(Yps1, - Ynlyrs -, Yp;i 0) Dtmpi1 Y12 D tmp1 Yi2 o Dtepg1 Ye2li—p
96000' - : . . .
Z;L:erl Yt—1Yt—p Z;L:p+1 Yt—2Yt—p ;L:p+1 y?—p

The expectation of this matrix is, under the null (n — p)I as E(y.y.—,) = 0 for al p not equal to zero and E(y?) = 1.

Then the scoretest is

2 2
1 n n
= =7 < Z yt—l?/t—2> +ot ( Z Ll/t,—lyffp>
! p t=p+1 t=p+1
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2 2
n Z;I:]H»l Yt—1Yt—2 I Z;l:p+l Yt—1Yt—p
Yimpr1¥ioa Y1 Vi

n(rf 4. +r2) = x5

14

8.5 Comparisons

All the tests have the same asymptotic distribution under the null. In some sense the LR test must be the preferred one as
it evaluates the likelihood under H and H;. However, the Wald and score are simpler.

LR evaluates and § evaluatesunder Hy + H,
Wald computes 6 evaluate under H;
Score usesjust 0y evaluate under Hy

From a computational viewpoint the score is most useful as it does not need to evaluate @, which for complicated
models can be hard.

Exercise

Construct the score, Wald and likelihood ratio tests for Hy, : 6 = 0 against H; : 6 # 0, whereY; ~ NID(0,0?) for a
known value of 2. Compare the exact distribution of these tests to their asymptotic approximations. How do these tests
change when o2 is unknown?

Finally, these arguments are based on asymptotic theory and so tend to be poor if n is small. Improvements, viahigher
order expansions, are possible. Inthe LR case they are particularly easy, using the Bartlett adjustment. The score test can
be corrected using a similar but more complicated argument, while the Wald test is hard to correct. This type of work is
discussed in Barndorff-Nielsen and Cox (1994).

8.6 Tests of the multiple linear regression model

8.6.1 Testing linear hypotheses about 3

The general linear framework is:
RB =1

where R isa (¢ x k) matrix of known constants, with ¢ < k and r isa (g x 1) vector of known constants. This can be
stated as
Ho: RB—71=0.

Examples of typical hypotheses are:
e Hy: (3; =0; X; hasnoinfluenceonY.
R=(0 .. 010 .. 0) r=0g=1
o Hy: Bi = Bio; where 3; has a specific value
R=(0 .. 010 .. 0) r=80 qg=1

with 1in the ith position
e Hy: (2+ (33 =1; eg. constant returnsto scalefor 52 = production and S5 = labour elasticitiesin a production
function
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e Hy: (33 =p40r (3 — B4 = 0; X3 and X4 have the same coefficient.
R=(001 -10 .. 0) r=0 ¢g=1
e Hy: B; =0forj=2,..,k; teststhesignificance of the overall relation.
R:( 0 Iy, ) r=0 q=k—1
e Hy: (B2 = 0; aspecified subset of regressors plays no role in determining Y. where 0 isavector of & — 1 zeros
R=( Opysy, I, ) 7=0 q=ko.

Since E(RB) = RB and var(RX)~' R’, (check), on making an assumption on the form of the sampling distribution of
u, we can obtain the sampling distribution of R 3. Suppose

u~ N(0,5%I)
then

N{B.o*(X'X)""}
N{RB,0*R(X'X) 'R’}
R(B-B) ~ N{0,/’R(X'X)"'R'}.

=
= @
22

If Hy istruethen
(RB—r)~N{0,0’R(X'X)"'R'}

verify that
(RS —r){o"R(X'X) 'R’} (BB~ 1) ~ x;.
Since
e'e 5
oz Xn—k>

under the Null hypothesis
(RB—r){R(X'X)"'R}" " (RB-1)/q _
e'e/(n—k) an—k

and the null hypothesisis rejected if the computed F’ value exceeds a presel ected critical value.

(81)

Example

Suppose we wish to test H : 3; = 0, then equation (8.1) becomes

where ¢;; is the element picked out by R(X’X )~ R’ and R picksout j3;. Taking the square root

Bi B

— ~t

= o/(cii)  se(B)

at-test. A single hypothesis allows either the ¢ or F' tests to be implemented.
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Example: Composite hypothesis

Totest Hy : B2 = B3 = ... = B = 0, first partition X as [¢ X,], where 7 is the unit vector and X, containsthe k — 1

regressor coefficients.
’ _ i . _ n i XQ
xx=( g )= (5 x,

Using the formula for inverted partitioned matrices, we can find the k& — 1 submatrix picked out by R(X 'X)~' R’ and
expressit as

(( X{Xo— Xfin X, ) = ( XjAX, ) ' =( x/X. )"
where A transforms observationsinto deviation form defined by A = I,, — (1/n)ii’, and X. = AX,. Since R3 = 3,
the numerator of (8.1) is B> X! X. 3, which is just the ESS. So the F statistic for testing the joint significance of the
complete set of regressorsis
~ ESS/(k-1) R?/(k-1)

- ) ~ Fi i

F = RS/ —h) ~ T—)(n—F

8.6.2 Restricted and unrestricted regressions

In restricted regression, restrictionsin H, areimposed on estimated equation.

Example: fitting restricted regression
Theregression in deviation formis
Yi = Patio + Paiz +e;
and weimpose 35 + 33 = 1. Thisgives
Yi — Tiz = /;2(1‘1',2 —T3) + €xi
forming new variables (y; — x; 3) and (z;2 — x;,3) where regression of first variable on second (without intercept term)

gives restricted estimate of 3,. Restricted RSS is denoted by e/ e,. Genera approach: requires B, vector that minimizes
RSS subject to restrictions, R3, — r. Set up Lagrangian function

¢=(y—XB.)(y - XB.) - 2N (RB. — 1)
where X is (¢ x 1) vector of Lagrange multipliers. Solving F.O.C's gives
B. =B+ (X'X)'R{R(X'X)"'R'}\(r — RB).
The residuals from the restricted and unrestricted regressions can be used to obtain the test statistic by noting that
ele,—ee=(r—RB){R(X'X)"'R'} (r — RB)

so that,
(ele. —e'e)/q

F=efm—ny ~Funk

8.6.3 Prediction
A Point prediction of Y conditional on some information (e.g. newly observed X's), is given by
f/f = ﬁl + ,32X24f + ...+ lék:Xk,f = C/;é

which is an optimal predictor of E(Y}), (by Gauss Markov). To obtain a confidence interval, suppose Yy = ¢’8 + uy,
then
BfZYf—Yf:uJ:—c’(,é—ﬂ)A
Thet-statistic is R
MYy

sincevar(ey) = o?{1+ ¢/(X'X)"'c}.
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8.6.4 Areassumptions underlying OL Svalid for given a data set?

If any of the underlying assumptions are wrong, then there is a specification error. These include possible problemswith
u, X and/or 3.

8.6.4.1 Problemswith u

(1) If u; ~ iid(0, ), but not normal, then BLUE properties still hold, but inference procedures only asymptotically
valid.

(2) Heteroscedasticity: E(uu’) = diag(c?, ..., 02 ). Assumption of homoscedasticity violated.

(3) Autocorrelated disturbances: E(uu;—s) # 0 for s # 0.

8.6.4.2 Problemswith E(Y'|X') and/or X

(1) Specification problem: exclusion of relevant variables.

(2) Inclusion of irrelevant variables.

(3) Incorrect functional form.

(4) X matrix hasless than full column rank: collinearity problem.

(5) E(X;,us) # 0: if lagged values of dependent variabl e appear as regressorsthat are correlated with past disturbances
but not current or future disturbances, then OLSis biased but consistent and asymptotically normal. If aregressor is
correlated with current disturbance (e.g. measurement error in regressor) then OLS is both biased and inconsistent.

(6) Nonstationary variables: inference procedures are nonstandard, e.g. cointegration, integrated variables, error cor-
rection models.

8.6.4.3 Problemswith 3

Sructural breaks: 3 is not constant over the sample period.

8.6.5 Iterative approach to model building

Three stage procedure based on identification, estimation and diagnostic tests. See for example, Box, Jenkins and Reinsel
(1994) and for diagnostic tests, see Doornik and Hendry (1994). Aim isto find a model that is ” approximately” correct.

(1) Identification: use of data and information on how series is generated in order to suggest parsimonious class of
models to be considered. For example, one could formulate a model, look at scatter plots, residuals, correlograms,
etc.

(2) Estimation: efficient use of data to make inferences about parameters conditional on adequacy of model being
considered. Are the coefficients reasonable; is the relationship statistically significant?

(3) Diagnostic checking: compare fitted model to data with intent to reveal model inadequacies; improve model. Look
at predictive performance etc.

8.6.6 Tests of parameter constancy
3 should apply both outside and within sample data: test predictive accuracy.

8.6.6.1 Chow forecast test

‘Large’ prediction errors cast doubt on constancy hypothesis. Divide data set of n observations into n ; to be used for
estimation and no = n — n, to be used for testing. Partition X and y into [ X1, X5] and [y, yol.
(1) Estimate OLSfromn; obs, obtaining
B = (X{X1) " X{y.

(2) Obtain prediction of y, vector, §, = X>0;.
(3) Obtain vector of prediction errors, d, and analyze sampling distribution under H (: parameter constancy.
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Suppose vector of prediction errorsis
d=y>—Po=1y— X251,
thenif y = X3 + u, with E(uu’) = 02T holdsfor both data sets then,

d=1y— Xof1 = w — X2(B1 — B)
It can be shown that E(d) = 0 and var(dd’) = 02{I,, + X>(X{X1) ' X;}. If we assume d ~ N{0,var(d)}, then
under the hypothesis of parameter constancy,
Fo d'{I,, + Xo(X{X1) 1 X}}~'d/ns
ejer/(n — k)
where e] e; isthe RSS from the estimated regression.
Note: one can also obtain the test in terms of the restricted and unrestricted regression.

~ Foyny—k

8.6.6.2 Hansen test

A difficulty with the Chow test is that the null hypothesis may be rejected for for certain partitionings and not for others.
The Hansen test fits the linear equation to all n observationsand so avoids this problem. These consist of tests for stability
of each parameter and of overall parameter stability. OL Sfit gives

n
E Tiger = 0
t=1

wheres? = 377", €7 /n. Defining
f { Ti et i=1,..,k
it = .

e2—62 i=k+1

giv%Zf’zl fie=0fori=1,...,k+ 1. Hansen test is based on cumulative sums

t
Sit = Zfi,]-
j=1

Individual test statistics are

-
L= 52

whereV; = Y7 f2, and thetest for joint stability is

1 n
L.=— Zs?V’lst
n t=1
where

seo= (St oo Skeie )I
foo= (fie o frerre )/

n

v o= S ns
t=1

Under null hypothesis, the cumulative sums will tend to be distributed around zero, so that ‘large’ values of the test
statistics suggest rejecting Hy.
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8.6.6.3 Test based on recursive estimation

Write the model as y: = x;/8 + u; Wwhere @/ = [1 22 ... x,¢] SO that the observations are assumed to be ordered over
time. Fit model to first k observations, next use k + 1 observations and compute coefficient vector again. Proceed for all
n observations to generate sequence of vectors [y, Bk+1, ..., Bn. Standard errors can be computed at each stage except
for the first (RSSis zero for t = k). Plots of the parameters (plus and minus two s.€'s) can be analyzed for parameter
constancy.
8.6.6.4 One step-ahead prediction errors
The one step-ahead prediction error is defined as

Vt =Yt — xt/,ét—l

with variance
var(vy) = o2 {1 + ) (X} Xe—1) L}

o2 can be replaced by the residual variance estimated from (¢ — 1) observations, provided ¢ — 1 > k. The squareroot gives
the estimated s.e. of regression. Plus or minus twice these can be plotted around the zero line with the actual prediction
errors - residuals outside s.e. bands are suggestive of parameter inconstancy.

See Johnston and Dinardo (1997, pp. 119-121), for CUSUM, CUSUM SQ tests and the Ramsey Reset test.

8.6.7 Tests of structural change

A structural change or break occurs if parameters underlying specified relationship differs between different subsets of
data. Supposen = nj + ng and that we have data X;, y; fori = 1, 2.

8.6.7.1 Example: threeformulationsfor testing one structural change

hn X 0 ) ( B ) . 2
= +u whereu ~ N(0,0°T
( Y2 ) ( 0 X B2 ©, )

Fitting this equation gives the unrestricted RSS, e’ e. The null hypothesis of no structural break is Hy : 81 = 32. Writing
OLS coefficients as

~ -1

B _ ( XX, 0 ) (X{yl > _ ( <X{xl)*1X{yl>

B2 0 XX Xiyo (X5X0) "' X3y
we can either estimate the model by running the OL S estimation once, or by fitting each equation separately. The unres-
tricted RSS can be obtainedase’e = €] e; + €} es.

The restricted model can be written as
Yy X
= +u
(m)-(%)e

giving an aternative formulation for testing H : 31 = 32 as

Unrestricted model is:

_ (eren—e'e)/k

~ Fin—ok-
e'e/(n—2k) Fn—2k

Itisalso possible to consider an aternative setup of the unrestricted model

y\_( X1 0 B
<y2>_<X2 X2><,32—,@1>+u

so that testing Hy, is equivalent to testing the joint significance of the & regressors.
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8.6.7.2 Testsfor intercepts, slope coefficients and parameters
Suppose we define
Xi=(4 Xy)adXo=(14 X5)
where 4, 3, aren; and n, vector of ones and the X;* are matrices of the & — 1 regressor variables. We can consider three
types of models:

n)- (%) ()
I: = . +u common parameters
(w)-(5 %) (s o
Y1 i 0 X[ o Differential intercepts,
II: = . o) +u
Y2 0 i X5 5 common slope vectors
ay
111 y\ (4 0 X 0 a | Differential intercepts,
' ) \0 i 0 X5 B: differential slope parameters
B3

Application to each will yield RSS with the associated degree of freedomn — k, n — k — 1 and n — 2k. Thetest statistics
for various hypotheses are then given by

o Test of differential intercepts Hy : ap = ap

_RSS-RSS,  po

RSS;/(n -k —1) '

o Test of differential slope vectors Hy : 87 = 33

(RSS, — RSS3)/(k —1)  Fornon

RSS;/(n — 2k)

e Test of differential parameters (intercepts and slopes) Hy : 31 = B

(RSS, — RSS)/k
RSS;/(n — 2k)

The degrees of freedom (d.o.f.) in the numerators are the number of restrictions imposed ingoing from the unrestricted

model to the restricted one; which is also equal to the differencein the d.o.f. of the RSS in the numerator.

F =

F=

F= ~ Fin—2k

8.7 Heter oscedasticity and autocorrelation

Additional references on these issues and others that will not be covered in this course can be found in White (1984) and
White (1998). When heteroscedasticity is present, (typically in cross-sectiona data), the disturbance vector is

a2 0 .. 0
0 o2 .. 0

var(u) =E(uu) = | | | .=V
0 0 .. o2

n

There are now n + k& unknowns; n unknown variances and k elements in the 3 vector. Additional assumptions (usualy
made from the disturbance process) are needed in order to estimate the model. One could postul ate that

02 =o%ry,; for i=1,2,..,n
where o2 is ascale factor and x5 is an explanatory variable. Then

21 0 0

0 2.2 0
var(u) = E(uu’) = o> . ) . =o20.
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This reduces the parameters to be estimated to & + 1, but the assumption made on the disturbances is very strong; it is
important to test for heteroscedasticity and, if found, to exploreits structure in order to derive feasible GL S estimators.

8.7.1 Propertiesof OL S estimators

The specified equation is
y = XpB+u with E(u) = 0 andE(uu’) = 0*02.

If X isnonstochastic, then the following hold,

e The OLS estimator is unbiased and consistent, (mean square consistent if the variance matrix, var( 3) has a zero
plim).

e OLSestimator isinefficient. That is, linear, unbiased but not minimum variance estimators.

o OLS coefficient s.€'s areincorrect, and the test statistics based on these areinvalid. !

The variance matrix can be expressed as

-5 (5 (£26) ()"

2o (1) (2)

Consistency requires both (1) and (2) to have finite plims. (1) L, finite matrix, if the regressors are stationary. (2) EN

finite in general, if elementsof 2 arefinite. If the X matrix contains one or more lags of the dependent variable, then the
OLS estimator will have afinite sample bias; but will be consistent if V' is diagonal. Autocorrelated disturbances cause
off-diagonal elementsin V' to be non-zero; combined with the X matrix containing one or more lagged y's, the estimator
will be inconsistent.

One can still carry out OLS in the presence of heteroscedasticity, though for valid inference, the correct form for
var(3) would have to be implemented, with 6202 = diag {02, 03, ..., 02}, requiring n. parameters to be estimated with
only n observations. White (1980) showed that looking at the problem in this way could be misleading and that the issue
that was important was finding a satisfactory estimate of X '02 22X, ak x k matrix, where k isindependent of n. Suppose
z/ =1, x2y, ..., Tk, iSthet'throw of X, then

. a2 0 .. 0 1
: 0 o3 0 A

X'o?0X = T T2 ... T, X
0 0 .. o2 ez

n

2 ’
E o Ty,
t=1

The White estimator replacesunknown o2 by e?, wheree, = y,— =/, ﬁ giving aconsistent estimator of the variance matrix
for the OLS coefficientsand is useful as it does not require any specific assumption on the form of heteroscedasticity. An

estimate of var(/3) isthen given by

var(8) = (X'X)'X'a2X(X'X)"!
o?2 = diag{ec},3,....e2}.

The correct variance matrix for the OLS coefficient vector is

E{(B-B)B-B)}

= E{(X'X)"'X'uw/X(X'X)""}
AX'X)TIX'exX(X'X)

var(B)

The conventional formula calculates o*(X’X ) ™", which is only part of the correct expression; so conventional test statistics are
invalidated.
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The square roots of the elements on the diagonal of var(3) are the estimated s.€'s of the OLD coefficients, referred
to as heteroscedasticity consistent s.€'s (HCSE's). The usual t and F tests are valid asymptotically. and genera linear
hypotheses can be tested using the Wald statistic.

8.7.2 Sometestsfor heteroscedasticity

Since OL S can beinefficient, it can beimportant to test for the presence of heteroscedasticity. A brief outline of the White
test, Breusch-Pagan/Godfrey test, and the Goldfeld-Quandt test will be given. Other tests which will not be covered in
this course include the Bartlett test, Szroeter’s class of tests and some nonparametric tests. For further information on
these, consult Johnston and Dinardo (1997, Ch. 6), or Judge, Griffiths, Hill, Littkepohl and Lee (1980, Ch. 11).

8.7.2.1 The Whitetest

The aim is to compute the auxiliary regression of the squared OLS residuals on a constant and a set of variables (the
regressors, their squares and their cross products). Suppose

o = (1 o 31 )

thenthere are effectively 9 possible variables, except that the square of 1is 1 and the crossproduct of 1 with the z variables
replicates them, so that the set becomes

R N S
(1 wou w3 a3, z3, woumsy ).

The regression is thus e on this set. On the hypothesis of homoscedasticity, nR? ~ x2 asymptotically, wherethe d.o.f's
are the number of variablesin the regression excluding the constant. In general, under the null of homoscedasticity,

nR? ~ x?,-

One problem with the White test is that the d.o.f. may become rather large, which reduces the power of the test.

8.7.2.2 The Breusch-Pagan/Godfrey test
Thisis an example of the LM test. Suppose we consider y; = =/3 + u; where
T, = ( 1 @oy w34 gy ) .

The heteroscedasticity is assumed to take the form

Eu; = 0 foralt
o} = Eul=h(za)
where z/ = [1, 2z, ..., 2] ISKNOWN, @@ = [a1, 2, ... , ] isunknown, and h(-) is some unspecified function that

takes positive values. The null of homoscedasticity is thus
Hy:ap=0a3=..=aqa,=0,
since then o2 = h(a;) =constant. The restricted model under H is then simply estimated by applying OLS on the
assumption of normally distributed disturbances. The test procedureis then carried out as,
(1) Obtainthe OLSresiduals, e; = y; — «/ 3 and an estimate 52 = 3" 2 /n.
(2) Regresse?/52 on 2z, by OLS and compute ESS.
(3) Under Hy,
1 d
5 E8 = X1
which rejects homoscedasticity if some pre-specified critical valueis exceeded.
(4) Anasymptotically equivalent procedureisto regresse? on z;; then nR? LA Xp_1 under Hy.
Thetest requires knowledge of the = variables causing the heteroscedasticity.
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8.7.2.3 The Goldfeld-Quandt test

Thisisafinite-sample test, applicableif thereis thought to be a single variable (typically one of the z’s) thought to be an
indicator of the heteroscedasticity. Suppose, o2 is assumed to be positively related to the i'th regressor, X ;. The test is
carried out in the following way,

(1) Re-order the obs. by the value of X ;.

(2) Omit ¢ central obs.

(3) Fit separate regressions by OLS on the first and last (n — ¢)/2 obs, provided (n — ¢)/2 exceeds the number of
parametersin the relation.

(4) If RSS, denotesthe RSS from the smaller X; values and RSS, denotes the RSS from the larger X ; values, then

RSS;
R= rss, Fln—c—2k)/2.(n—c—2k) /2

under homoscedasticity.

The power of the test depends on ¢; power being low if ¢ istoo large or ¢ istoo small. An ad-hoc procedure would be to
setc=n/3.
8.7.3 Autocorrelated disturbances
The pairwise autocovariances are defined by
s = E(ugurys) fors=0,4+1,+2, ...
When s = 0, 9 = E(u?) = 2. The autocorrelation coefficient at lag s is defined by

COV (Uytyts)

Ps

var(ug )var(u+)
which reducesto y
Ps = =
Yo
given homoscedasticity. We can express var(u) as
0 Yo Tn—i 1 pL e Pni
7 Y0 e Tn—2 5 p1 1 v Pn—2
var(u) = . . . =0, . . .
Tn—1 Yn—2 - 0 Pn—1 Pn—2 - 1

Without any further information, the estimation problem isintractable as there are n + & unknowns and only n obs. It is
important to test for autocorrelation as presence of autocorrelated disturbances could indicate an inadequate specification.

8.7.3.1 Forms of autocorrelation

What follows will be covered in detail during the time series course in the second term and so is only meant as an
introduction. The first-order autoregressive model, or AR(1) is defined as

U = Qui—1 + €

wheree, is N(0, 02). Suppose, (for stationarity), that |¢| < 1. Then E(u,) = 0 and var(u;) = 02 = 02/(1 — ¢?) so that

o=

the autocorrelation coefficientsare p, = ¢°, for s > 0. The variance-covariance matrix of u can be written as

1 ¢ .. P!
] 1 P2
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so that there are only k + 2 parametersto be estimated and feasible GL S can be carried out. Another popular model! isthe
first order moving average model, or MA(1), defined by

up = € + Oer—q

wheree, isdefined asabove. Then o2 = 02(1 + 62), p1 = 0/(1 + 6%) and p; = 0 fori > 2.

8.7.4 OL S and autocorrelated disturbances

If OLS is applied when X is nonstochastic and the disturbances are autocorrelated, then the consequences are the same
as those under heteroscedasticity - unbiased, consistent but inefficient estimation and invalid inference procedures. See
Johnston and Dinardo (1997, pp. 177-178) for an example.

8.7.5 Testing for autocorrelated disturbances
Supposey = X 3 + w and that u; = pu,—1 + €;. Under the null hypothesis of zero autocorrelation,
Ho:p=0 vs Hi:p#0
Testing the hypothesis involves the residuals (since the u’s are unobservable), e = y — X 8. Since e = Mu, where
M =1- X(X'X)"' X' (symmetric, idempotent and of rank n — k),
var(e) = E(ee’) = 02 M.
As M is afunction of the sample values of the explanatory variables, exact finite-sample tests on the ¢’s are impossible

to derive that will be valid for any X matrix. A brief outline of certain tests is outlined below, for further reference, see
Johnston and Dinardo (1997, pp. 179-187), or Judge et al. (1980, Ch. 8.4).

8.7.5.1 Durbin-Watson test
The Durbin Watson, or (DW) test statistic is computed from the OLSresidualse = y — X ,6 and is defined as
_ an:z(et - etfl)z
d= - <n 2
POAEC:
and ranges between 0 and 4 with

e d < 2 for positive autocorrelation of thee’s
e d > 2 for negative correlation of thee’s
e d = 2 for zero correlation of thee’s.

Since any computes d value depends on the associated X matrix, Durbin and Watson established upper (d /) and lower
(d1,) boundsfor the critical values. To test the hypothesis of zero autocorrelation, the procedureis

(1) Ifd < dy, reject Hy.
(2) If d > dy, donot reject H.
() If d, < d < dy, thetestisinconclusive.

Note: to apply DW’s test, a constant must be included in the regression and the test is only valid for nonstochastic X .

8.7.5.2 Breusch-Godfrey test

The procedure builds on the DW test and proceeds as follows:

(1) Apply OLSto the specified model to obtain theresidualse ;.

(2) Regresse, on [l z; e;—1] tofind R2.

(3) Under Hy, nR? isasymptotically x?.
Whereas the DW test suggests |ooking at the significance of the coefficient on e;_1, the Breusch-Godfrey (LM) test gives
nR? asatest statistic with an asymptotic 2 distribution. Both tests are asymptotically equivalent.
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8.7.5.3 Box-Pierce-Ljung statistic
The Box-Pierce ) statistic is based on the squares on the first p autocorrelation coefficients of the OLS residuals and is
defined as )
Q= "Z 7’]2-
j=1
where n
b Dt GO
! 211:1 g

Under the null of zero autocorrelation, Q hasa y 7 distribution. The revised Ljung-Box statistic (which has better small
sample performance) is defined by




